54 research outputs found

    Who Risks and Wins? - Simulated Cost Variance in Sustainable Construction Projects

    Full text link
    [EN] More and more construction projects are closed before they ever start. Among the most significant reasons for project failures is cost risk. Construction companies have many problems with reliable cost management. Rising demands of the key market players insist on making construction projects more sustainable according to the simultaneous improvement of the economic, environmental and social responsiveness dimensions. In order to investigate these problems, a four-phase research methodology has been followed consisting of: (1) literature review to identify research trends and gaps, (2) survey to construction experts to detect their subjective perspectives about risk costs and analyse the corresponding costs structure for the investment in sustainable projects, (3) simulations based on Monte Carlo simulation with an author's methodology for calculating the cost risk with an additional statistical analysis, (4) ending questionnaire to obtain the final feedback from the experts and the validation of obtained results. A contribution to the development of knowledge about cost risk is the observation that the changing probability distributions of individual cost-generating components may include both economic as well as technological and organizational aspects. Thus, with the proposed approach, often complex, global challenges of sustainable construction projects can be tackled in an accessible way.Statutory research at the UTP University of Science and Technology, Bydgoszcz, Poland.Górecki, J.; Díaz-Madroñero Boluda, FM. (2020). Who Risks and Wins? - Simulated Cost Variance in Sustainable Construction Projects. Sustainability. 12(8):1-31. https://doi.org/10.3390/su12083370S131128Wong, J. M. W., Thomas Ng, S., & Chan, A. P. C. (2010). Strategic planning for the sustainable development of the construction industry in Hong Kong. Habitat International, 34(2), 256-263. doi:10.1016/j.habitatint.2009.10.002Sobotka, A. (2017). Innovative solutions in engineering of construction projects. Procedia Engineering, 208, 160-165. doi:10.1016/j.proeng.2017.11.034Kaplinski, O. (2013). Risk Management of Construction Works by Means of the Utility Theory: A Case Study. Procedia Engineering, 57, 533-539. doi:10.1016/j.proeng.2013.04.068Diekmann, J. E., & Featherman, W. D. (1998). Assessing Cost Uncertainty: Lessons from Environmental Restoration Projects. Journal of Construction Engineering and Management, 124(6), 445-451. doi:10.1061/(asce)0733-9364(1998)124:6(445)Špačková, O., Novotná, E., Šejnoha, M., & Šejnoha, J. (2013). Probabilistic models for tunnel construction risk assessment. Advances in Engineering Software, 62-63, 72-84. doi:10.1016/j.advengsoft.2013.04.002Wang, W.-C., Wang, S.-H., Tsui, Y.-K., & Hsu, C.-H. (2012). A factor-based probabilistic cost model to support bid-price estimation. Expert Systems with Applications, 39(5), 5358-5366. doi:10.1016/j.eswa.2011.11.049Alwan, Z., Jones, P., & Holgate, P. (2017). Strategic sustainable development in the UK construction industry, through the framework for strategic sustainable development, using Building Information Modelling. Journal of Cleaner Production, 140, 349-358. doi:10.1016/j.jclepro.2015.12.085Chen, Y., Okudan, G. E., & Riley, D. R. (2010). Sustainable performance criteria for construction method selection in concrete buildings. Automation in Construction, 19(2), 235-244. doi:10.1016/j.autcon.2009.10.004Opoku, D.-G. J., Ayarkwa, J., & Agyekum, K. (2019). Barriers to environmental sustainability of construction projects. Smart and Sustainable Built Environment, 8(4), 292-306. doi:10.1108/sasbe-08-2018-0040Freire-Guerrero, A., Alba-Rodríguez, M. D., & Marrero, M. (2019). A budget for the ecological footprint of buildings is possible: A case study using the dwelling construction cost database of Andalusia. Sustainable Cities and Society, 51, 101737. doi:10.1016/j.scs.2019.101737Cheng, W., Sodagar, B., & Sun, F. (2017). Comparative analysis of environmental performance of an office building using BREEAM and GBL. International Journal of Sustainable Development and Planning, 12(03), 528-540. doi:10.2495/sdp-v12-n3-528-540Wang, G. B., He, G. Y., & Bian, L. (2011). Sustainable Construction Project under Lean Construction Theory. Advanced Materials Research, 250-253, 3345-3349. doi:10.4028/www.scientific.net/amr.250-253.3345Zhong, Z. Y., & Chen, Y. G. (2011). Principles of Sustainable Construction Project Management Based on Lean Construction. Advanced Materials Research, 225-226, 766-770. doi:10.4028/www.scientific.net/amr.225-226.766Rafindadi, A. D., Mikić, M., Kovačić, I., & Cekić, Z. (2014). Global Perception of Sustainable Construction Project Risks. Procedia - Social and Behavioral Sciences, 119, 456-465. doi:10.1016/j.sbspro.2014.03.051Solís-Guzmán, J., Rivero-Camacho, C., Alba-Rodríguez, D., & Martínez-Rocamora, A. (2018). Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project. Sustainability, 10(5), 1359. doi:10.3390/su10051359Baldry, D. (1998). The evaluation of risk management in public sector capital projects. International Journal of Project Management, 16(1), 35-41. doi:10.1016/s0263-7863(97)00015-xRanasinghe, M. (1994). Contingency allocation and management for building projects. Construction Management and Economics, 12(3), 233-243. doi:10.1080/01446199400000031Plebankiewicz, E., Zima, K., & Wieczorek, D. (2016). Life Cycle Cost Modelling of Buildings with Consideration of the Risk. Archives of Civil Engineering, 62(2), 149-166. doi:10.1515/ace-2015-0071Heralova, R. S. (2014). Life Cycle Cost Optimization Within Decision Making on Alternative Designs of Public Buildings. Procedia Engineering, 85, 454-463. doi:10.1016/j.proeng.2014.10.572Hwang, B.-G., Shan, M., Phua, H., & Chi, S. (2017). An Exploratory Analysis of Risks in Green Residential Building Construction Projects: The Case of Singapore. Sustainability, 9(7), 1116. doi:10.3390/su9071116Lee, J. K., Han, S. H., Jang, W., & Jung, W. (2017). «Win-win strategy» for sustainable relationship between general contractors and subcontractors in international construction projects. KSCE Journal of Civil Engineering, 22(2), 428-439. doi:10.1007/s12205-017-1613-7Artto, K. A., Lehtonen, J.-M., & Saranen, J. (2001). Managing projects front-end: incorporating a strategic early view to project management with simulation. International Journal of Project Management, 19(5), 255-264. doi:10.1016/s0263-7863(99)00082-4Walȩdzik, K., & Mańdziuk, J. (2018). Applying hybrid Monte Carlo Tree Search methods to Risk-Aware Project Scheduling Problem. Information Sciences, 460-461, 450-468. doi:10.1016/j.ins.2017.08.049Van Slyke, R. M. (1963). Letter to the Editor—Monte Carlo Methods and the PERT Problem. Operations Research, 11(5), 839-860. doi:10.1287/opre.11.5.839Chau, K. W. (1995). Monte Carlo simulation of construction costs using subjective data. Construction Management and Economics, 13(5), 369-383. doi:10.1080/01446199500000042Beeston *, D. (1986). Combining risks in estimating. Construction Management and Economics, 4(1), 75-79. doi:10.1080/01446198600000005Górecki, J., & Płoszaj, E. (2019). Cost risk of construction of small hydroelectric power plants. MATEC Web of Conferences, 262, 07004. doi:10.1051/matecconf/201926207004Zhang, H. Y., & Yang, G. B. (2011). Review of Study on Risk Management for the Construction Project. Advanced Materials Research, 243-249, 6404-6409. doi:10.4028/www.scientific.net/amr.243-249.6404Xia, N., Zou, P. X. W., Griffin, M. A., Wang, X., & Zhong, R. (2018). Towards integrating construction risk management and stakeholder management: A systematic literature review and future research agendas. International Journal of Project Management, 36(5), 701-715. doi:10.1016/j.ijproman.2018.03.006Siraj, N. B., & Fayek, A. R. (2019). Risk Identification and Common Risks in Construction: Literature Review and Content Analysis. Journal of Construction Engineering and Management, 145(9), 03119004. doi:10.1061/(asce)co.1943-7862.0001685Díaz-Madroñero, M., Mula, J., & Peidro, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research, 52(17), 5171-5205. doi:10.1080/00207543.2014.899721Díaz-Madroñero, M., Peidro, D., & Mula, J. (2015). A review of tactical optimization models for integrated production and transport routing planning decisions. Computers & Industrial Engineering, 88, 518-535. doi:10.1016/j.cie.2015.06.010Li, B., Akintoye, A., Edwards, P. J., & Hardcastle, C. (2005). Perceptions of positive and negative factors influencing the attractiveness of PPP/PFI procurement for construction projects in the UK. Engineering, Construction and Architectural Management, 12(2), 125-148. doi:10.1108/09699980510584485Zou, P. X. W., Zhang, G., & Wang, J. (2007). Understanding the key risks in construction projects in China. International Journal of Project Management, 25(6), 601-614. doi:10.1016/j.ijproman.2007.03.001Mohamed, F. D. (2012). Integrating Risk Assessment in Planning for Sustainable Infrastructure Projects. ICSDEC 2012. doi:10.1061/9780784412688.042Taylan, O., Bafail, A. O., Abdulaal, R. M. S., & Kabli, M. R. (2014). Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Applied Soft Computing, 17, 105-116. doi:10.1016/j.asoc.2014.01.003Chou, J.-S., & Le, T.-S. (2014). Probabilistic multiobjective optimization of sustainable engineering design. KSCE Journal of Civil Engineering, 18(4), 853-864. doi:10.1007/s12205-014-0373-xDziadosz, A., Tomczyk, A., & Kapliński, O. (2015). Financial Risk Estimation in Construction Contracts. Procedia Engineering, 122, 120-128. doi:10.1016/j.proeng.2015.10.015Lee, S., & Kim, K. (2015). Collar Option Model for Managing the Cost Overrun Caused by Change Orders. Sustainability, 7(8), 10649-10663. doi:10.3390/su70810649Kankhva, V. (2016). Methodic Approaches to Cost Evaluation of Innovation Projects in Underground Development. Procedia Engineering, 165, 1305-1309. doi:10.1016/j.proeng.2016.11.855Badi, S. M., & Pryke, S. (2016). Assessing the impact of risk allocation on sustainable energy innovation (SEI). International Journal of Managing Projects in Business, 9(2), 259-281. doi:10.1108/ijmpb-10-2015-0103Ayub, B., Thaheem, M. J., & Din, Z. ud. (2016). Dynamic Management of Cost Contingency: Impact of KPIs and Risk Perception. Procedia Engineering, 145, 82-87. doi:10.1016/j.proeng.2016.04.021Ali, Z., Zhu, F., & Hussain, S. (2018). Risk Assessment of Ex-Post Transaction Cost in Construction Projects Using Structural Equation Modeling. Sustainability, 10(11), 4017. doi:10.3390/su10114017Baudrit, C., Taillandier, F., Tran, T. T. P., & Breysse, D. (2018). Uncertainty Processing and Risk Monitoring in Construction Projects Using Hierarchical Probabilistic Relational Models. Computer-Aided Civil and Infrastructure Engineering, 34(2), 97-115. doi:10.1111/mice.12391Flyvbjerg, B., Ansar, A., Budzier, A., Buhl, S., Cantarelli, C., Garbuio, M., … van Wee, B. (2018). Five things you should know about cost overrun. Transportation Research Part A: Policy and Practice, 118, 174-190. doi:10.1016/j.tra.2018.07.013Cantarelli, C. C., van Wee, B., Molin, E. J. E., & Flyvbjerg, B. (2012). Different cost performance: different determinants? Transport Policy, 22, 88-95. doi:10.1016/j.tranpol.2012.04.002Cantarelli, C. C., Molin, E. J. E., van Wee, B., & Flyvbjerg, B. (2012). Characteristics of cost overruns for Dutch transport infrastructure projects and the importance of the decision to build and project phases. Transport Policy, 22, 49-56. doi:10.1016/j.tranpol.2012.04.001Skamris, M. K., & Flyvbjerg, B. (1997). Inaccuracy of traffic forecasts and cost estimates on large transport projects. Transport Policy, 4(3), 141-146. doi:10.1016/s0967-070x(97)00007-3Flyvbjerg, B., Skamris holm, M. K., & Buhl, S. L. (2003). How common and how large are cost overruns in transport infrastructure projects? Transport Reviews, 23(1), 71-88. doi:10.1080/01441640309904Plebankiewicz, E. (2018). Model of Predicting Cost Overrun in Construction Projects. Sustainability, 10(12), 4387. doi:10.3390/su10124387Cavalieri, M., Cristaudo, R., & Guccio, C. (2019). On the magnitude of cost overruns throughout the project life-cycle: An assessment for the Italian transport infrastructure projects. Transport Policy, 79, 21-36. doi:10.1016/j.tranpol.2019.04.001Li, S., Lu, Y., Kua, H. W., & Chang, R. (2020). The economics of green buildings: A life cycle cost analysis of non-residential buildings in tropic climates. Journal of Cleaner Production, 252, 119771. doi:10.1016/j.jclepro.2019.119771Švajlenka, J., & Kozlovská, M. (2020). Evaluation of the efficiency and sustainability of timber-based construction. Journal of Cleaner Production, 259, 120835. doi:10.1016/j.jclepro.2020.120835Švajlenka, J., Kozlovská, M., & Pošiváková, T. (2018). Analysis of Selected Building Constructions Used in Industrial Construction in Terms of Sustainability Benefits. Sustainability, 10(12), 4394. doi:10.3390/su10124394Lei, Z., Tang, W., Duffield, C., Zhang, L., Hui, F., & You, R. (2018). Qualitative Analysis of the Occupational Health and Safety Performance of Chinese International Construction Projects. Sustainability, 10(12), 4344. doi:10.3390/su10124344Yang, Y., Tang, W., Shen, W., & Wang, T. (2019). Enhancing Risk Management by Partnering in International EPC Projects: Perspective from Evolutionary Game in Chinese Construction Companies. Sustainability, 11(19), 5332. doi:10.3390/su11195332Kapelko, M., Oude Lansink, A., & Stefanou, S. E. (2014). Assessing dynamic inefficiency of the Spanish construction sector pre- and post-financial crisis. European Journal of Operational Research, 237(1), 349-357. doi:10.1016/j.ejor.2014.01.047Sfakianaki, E., Iliadis, T., & Zafeiris, E. (2015). Crisis management under an economic recession in construction: the Greek case. International Journal of Management and Decision Making, 14(4), 373. doi:10.1504/ijmdm.2015.07401

    MRP IV: Planificación de requerimientos de materiales cuarta generación. Integración de la planificación de la producción y del transporte de aprovisionamiento

    Full text link
    Tesis por compendioEl sistema de planificación de requerimientos de materiales o MRP (Material Requirement Planning), desarrollado por Orlicky en 1975, sigue siendo en nuestros días y, a pesar de sus deficiencias identificadas, el sistema de planificación de la producción más utilizado por las empresas industriales. Las evoluciones del MRP se vieron reflejadas en el sistema MRPII (Manufacturing Resource Planning), que considera restricciones de capacidad productiva, MRPIII (Money Resource Planning), que introduce la función de finanzas; y la evolución comercial del mismo en el ERP (Enterprise Resource Planning), que incorpora modularmente todas las funciones de la empresa en un único sistema de decisión, cuyo núcleo central es el MRP. Los desarrollos posteriores de los sistemas ERP han incorporado las nuevas tecnologías de la información y comunicaciones. Asimismo, éstos se han adaptado al contexto económico actual caracterizado por la globalización de los negocios y la deslocalización de los proveedores desarrollando otras funciones como la gestión de la cadena de suministro o del transporte, entre otros. Por otro lado, existen muchos trabajos en la literatura académica que han intentado resolver algunas de las debilidades del MRP tales como la optimización de los resultados, la consideración de la incertidumbre en determinados parámetros, el inflado de los tiempos de entrega, etc. Sin embargo, tanto en el ámbito comercial como en el científico, el MRP y sus variantes se centran en el requerimiento de los materiales y en la planificación de las capacidades de producción, lo que es su desventaja principal en aquellas cadenas de suministro donde existe una gran deslocalización de los proveedores de materias primas y componentes. En estos entornos, la planificación del transporte adquiere un protagonismo fundamental, puesto que los elevados costes y las restricciones logísticas suelen hacer subóptimos e incluso infactibles los planes de producción propuestos, siendo la re-planificación manual una práctica habitual en las empresas. Esta tesis doctoral propone un modelo denominado MRPIV, que considera de forma integrada las decisiones de la planificación de materiales, capacidades de recursos de producción y el transporte, con las restricciones propias de este último, tales como diferentes modos de recogida (milk-run, camión completo, rutas) en la cadena de suministro con el objetivo de evitar la suboptimización de estos planes que en la actualidad se generan usualmente de forma secuencial e independiente. El modelo propuesto se ha validado en una cadena de suministro del sector del automóvil confirmando la reducción de costes totales y una planificación más eficiente del transporte de los camiones necesarios para efectuar el aprovisionamiento.Díaz-Madroñero Boluda, FM. (2015). MRP IV: Planificación de requerimientos de materiales cuarta generación. Integración de la planificación de la producción y del transporte de aprovisionamiento [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48524TESISCompendi

    Architecture for collaborative planning, forecasting and replenishment in a mass customization environment

    Full text link
    [EN] In this paper, an architecture for collaborative planning, forecasting and replenishment in a mass customization environment is proposed. For this, on one hand, the main activities of the most important collaborative models and, on the other hand, the main processes related to mass customization environments. In order to achieve it, a set of interfaces are proposed, associated with the definition of products and additional services, the manufacturing and shipping of products, as well as transport and reception. The proposal is composed of a conceptual model, an implementation methodology, as well as possible technological solutions for its development in industrial companies[ES] En este trabajo se propone una arquitectura para la previsión, planificación y reaprovisionamiento colaborativo en un entorno de personalización en masa. Para ello, se identifica las actividades principales de los modelos colaborativos más destacados y los procesos principales asociados a los entornos de personalización en masa. Para llegar a ésta, se proponen un conjunto de interfases asociados a la definición de productos y servicios adicionales, a la fabricación y expedición, así como a actividades de transporte y recepción. La propuesta se compone de un modelo conceptual, una metodología de implantación, así como por posibles soluciones tecnológicas asociadas para su desarrollo en empresas industriales.Díaz-Madroñero Boluda, FM.; Poler, R. (2017). Arquitectura para la previsión, planificación y reaprovisionamiento colaborativo en un entorno de personalización en masa. Direccion y Organizacion. (63):5-20. http://hdl.handle.net/10251/108649S5206

    Tools for managing references in class projects and scientific works

    Full text link
    [EN] This paper presents a set of tools to manage references, for its application in class projects, in the university context, and in scientific works. The main aim of this paper is to provide a set of tools to support university students and researchers to store all their research, and sort all their references, documents and notes in one place. This paper is an extension of the paper Adjustment of students to be future researchers: The importance of a systematic literature review methodology for MSC students [1] that proposes a guideline to help students to systematically perform the literature review phase in the research work. The work developed in the present paper, focuses on collecting, managing and treating the results through building a personalised database, proposing in a more extended way a set of tools to manage references of the research work performed in the systematic literature review.The research leading to these results has received funding from European Community's H2020 Programme (H2020/2014-2020) under grant agreement no 636909, "Cloud Collaborative Manufacturing Networks (C2NET)".Andres, B.; Poler, R.; Díaz-Madroñero Boluda, FM. (2017). Tools for managing references in class projects and scientific works. INTED proceedings (Online). 210-219. https://doi.org/10.21125/inted.2017.0172S21021

    Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions

    Full text link
    "This is an Accepted Manuscript of an article published in International Journal of Production Research on December 2014, available online: http://www.tandfonline.com/10.1080/00207543.2014.920115."In this paper, we formulate the material requirements planning) problem of a first-tier supplier in an automobile supply chain through a fuzzy multi-objective decision model, which considers three conflictive objectives to optimise: minimisation of normal, overtime and subcontracted production costs of finished goods plus the inventory costs of finished goods, raw materials and components; minimisation of idle time; minimisation of backorder quantities. Lack of knowledge or epistemic uncertainty is considered in the demand, available and required capacity data. Integrity conditions for the main decision variables of the problem are also considered. For the solution methodology, we use a fuzzy goal programming approach where the importance of the relations among the goals is considered fuzzy instead of using a crisp definition of goal weights. For illustration purposes, an example based on modifications of real-world industrial problems is used.This work has been funded by the Universitat Politecnica de Valencia Project: 'Material Requirements Planning Fourth Generation (MRPIV)' (Ref. PAID-05-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Jiménez, M. (2014). Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. International Journal of Production Research. 52(23):6971-6988. doi:10.1080/00207543.2014.920115S697169885223Aköz, O., & Petrovic, D. (2007). A fuzzy goal programming method with imprecise goal hierarchy. European Journal of Operational Research, 181(3), 1427-1433. doi:10.1016/j.ejor.2005.11.049Alfieri, A., & Matta, A. (2010). Mathematical programming representation of pull controlled single-product serial manufacturing systems. Journal of Intelligent Manufacturing, 23(1), 23-35. doi:10.1007/s10845-009-0371-xAloulou, M. A., Dolgui, A., & Kovalyov, M. Y. (2013). A bibliography of non-deterministic lot-sizing models. International Journal of Production Research, 52(8), 2293-2310. doi:10.1080/00207543.2013.855336Barba-Gutiérrez, Y., & Adenso-Díaz, B. (2009). Reverse MRP under uncertain and imprecise demand. The International Journal of Advanced Manufacturing Technology, 40(3-4), 413-424. doi:10.1007/s00170-007-1351-yBookbinder, J. H., McAuley, P. T., & Schulte, J. (1989). Inventory and Transportation Planning in the Distribution of Fine Papers. Journal of the Operational Research Society, 40(2), 155-166. doi:10.1057/jors.1989.20Chiang, W. K., & Feng, Y. (2007). The value of information sharing in the presence of supply uncertainty and demand volatility. International Journal of Production Research, 45(6), 1429-1447. doi:10.1080/00207540600634949Díaz-Madroñero, M., Mula, J., & Jiménez, M. (2013). A Modified Approach Based on Ranking Fuzzy Numbers for Fuzzy Integer Programming with Equality Constraints. Annals of Industrial Engineering 2012, 225-233. doi:10.1007/978-1-4471-5349-8_27DOLGUI, A., BEN AMMAR, O., HNAIEN, F., & LOULY, M. A. O. (2013). A State of the Art on Supply Planning and Inventory Control under Lead Time Uncertainty. Studies in Informatics and Control, 22(3). doi:10.24846/v22i3y201302Dubois, D. (2011). The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets and Systems, 184(1), 3-28. doi:10.1016/j.fss.2011.06.003Grabot, B., Geneste, L., Reynoso-Castillo, G., & V�rot, S. (2005). Integration of uncertain and imprecise orders in the MRP method. Journal of Intelligent Manufacturing, 16(2), 215-234. doi:10.1007/s10845-004-5890-xGuillaume, R., Thierry, C., & Grabot, B. (2010). Modelling of ill-known requirements and integration in production planning. Production Planning & Control, 22(4), 336-352. doi:10.1080/09537281003800900Heilpern, S. (1992). The expected value of a fuzzy number. Fuzzy Sets and Systems, 47(1), 81-86. doi:10.1016/0165-0114(92)90062-9Hnaien, F., Dolgui, A., & Ould Louly, M.-A. (2008). Planned lead time optimization in material requirement planning environment for multilevel production systems. Journal of Systems Science and Systems Engineering, 17(2), 132-155. doi:10.1007/s11518-008-5072-zHung, Y.-F., & Chang, C.-B. (1999). Determining safety stocks for production planning in uncertain manufacturing. International Journal of Production Economics, 58(2), 199-208. doi:10.1016/s0925-5273(98)00124-8Inderfurth, K. (2009). How to protect against demand and yield risks in MRP systems. International Journal of Production Economics, 121(2), 474-481. doi:10.1016/j.ijpe.2007.02.005JIMÉNEZ, M. (1996). RANKING FUZZY NUMBERS THROUGH THE COMPARISON OF ITS EXPECTED INTERVALS. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 04(04), 379-388. doi:10.1142/s0218488596000226Jiménez, M., Arenas, M., Bilbao, A., & Rodrı´guez, M. V. (2007). Linear programming with fuzzy parameters: An interactive method resolution. European Journal of Operational Research, 177(3), 1599-1609. doi:10.1016/j.ejor.2005.10.002Jones, D. (2011). A practical weight sensitivity algorithm for goal and multiple objective programming. European Journal of Operational Research, 213(1), 238-245. doi:10.1016/j.ejor.2011.03.012Lage Junior, M., & Godinho Filho, M. (2010). Variations of the kanban system: Literature review and classification. International Journal of Production Economics, 125(1), 13-21. doi:10.1016/j.ijpe.2010.01.009Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., & Eversdyk, D. (2004). A simulation based optimization approach to supply chain management under demand uncertainty. Computers & Chemical Engineering, 28(10), 2087-2106. doi:10.1016/j.compchemeng.2004.06.006Koh, S. C. L. (2004). MRP-controlled batch-manufacturing environment under uncertainty. Journal of the Operational Research Society, 55(3), 219-232. doi:10.1057/palgrave.jors.2601710Lai, Y.-J., & Hwang, C.-L. (1993). Possibilistic linear programming for managing interest rate risk. Fuzzy Sets and Systems, 54(2), 135-146. doi:10.1016/0165-0114(93)90271-iLee, H. L., & Billington, C. (1993). Material Management in Decentralized Supply Chains. Operations Research, 41(5), 835-847. doi:10.1287/opre.41.5.835Lee, Y. H., Kim, S. H., & Moon, C. (2002). Production-distribution planning in supply chain using a hybrid approach. Production Planning & Control, 13(1), 35-46. doi:10.1080/09537280110061566Li, X., Zhang, B., & Li, H. (2006). Computing efficient solutions to fuzzy multiple objective linear programming problems. Fuzzy Sets and Systems, 157(10), 1328-1332. doi:10.1016/j.fss.2005.12.003Louly, M.-A., & Dolgui, A. (2011). Optimal time phasing and periodicity for MRP with POQ policy. International Journal of Production Economics, 131(1), 76-86. doi:10.1016/j.ijpe.2010.04.042Louly, M. A., Dolgui, A., & Hnaien, F. (2008). Optimal supply planning in MRP environments for assembly systems with random component procurement times. International Journal of Production Research, 46(19), 5441-5467. doi:10.1080/00207540802273827Mohapatra, P., Benyoucef, L., & Tiwari, M. K. (2013). Integration of process planning and scheduling through adaptive setup planning: a multi-objective approach. International Journal of Production Research, 51(23-24), 7190-7208. doi:10.1080/00207543.2013.853890Mula, J., & Díaz-Madroñero, M. (2012). Solution Approaches for Material Requirement Planning* with Fuzzy Costs. Industrial Engineering: Innovative Networks, 349-357. doi:10.1007/978-1-4471-2321-7_39Mula, J., Poler, R., & García, J. P. (2006). Evaluación de Sistemas para la Planificación y Control de la Producción/[title] [title language=en]Evaluation of Production Planning and Control Systems. Información tecnológica, 17(1). doi:10.4067/s0718-07642006000100004Mula, J., Poler, R., & Garcia, J. P. (2006). MRP with flexible constraints: A fuzzy mathematical programming approach. Fuzzy Sets and Systems, 157(1), 74-97. doi:10.1016/j.fss.2005.05.045Mula, J., Poler, R., & Garcia-Sabater, J. P. (2008). Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. International Journal of Production Research, 46(20), 5589-5606. doi:10.1080/00207540701413912Mula, J., Poler, R., & Garcia-Sabater, J. P. (2007). Material Requirement Planning with fuzzy constraints and fuzzy coefficients. Fuzzy Sets and Systems, 158(7), 783-793. doi:10.1016/j.fss.2006.11.003Mula, J., Poler, R., García-Sabater, J. P., & Lario, F. C. (2006). Models for production planning under uncertainty: A review. International Journal of Production Economics, 103(1), 271-285. doi:10.1016/j.ijpe.2005.09.001Noori, S., Feylizadeh, M. R., Bagherpour, M., Zorriassatine, F., & Parkin, R. M. (2008). Optimization of material requirement planning by fuzzy multi-objective linear programming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(7), 887-900. doi:10.1243/09544054jem1014Olhager, J. (2013). Evolution of operations planning and control: from production to supply chains. International Journal of Production Research, 51(23-24), 6836-6843. doi:10.1080/00207543.2012.761363Peidro, D., Mula, J., Alemany, M. M. E., & Lario, F.-C. (2012). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research, 50(11), 3011-3020. doi:10.1080/00207543.2011.588267Peidro, D., Mula, J., Jiménez, M., & del Mar Botella, M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205(1), 65-80. doi:10.1016/j.ejor.2009.11.031Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-yPeidro, D., Mula, J., Poler, R., & Verdegay, J.-L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160(18), 2640-2657. doi:10.1016/j.fss.2009.02.021Sabri, E. H., & Beamon, B. M. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28(5), 581-598. doi:10.1016/s0305-0483(99)00080-8Selim, H., & Ozkarahan, I. (2006). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. doi:10.1007/s00170-006-0842-6Suwanruji, P., & Enns, S. T. (2006). Evaluating the effects of capacity constraints and demand patterns on supply chain replenishment strategies. International Journal of Production Research, 44(21), 4607-4629. doi:10.1080/00207540500494527Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010Torabi, S. A., & Moghaddam, M. (2012). Multi-site integrated production-distribution planning with trans-shipment: a fuzzy goal programming approach. International Journal of Production Research, 50(6), 1726-1748. doi:10.1080/00207543.2011.560907Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi:10.1016/0165-0114(78)90031-

    Overview of Dynamic Facility Layout Planning as a Sustainability Strategy

    Full text link
    [EN] The facility layout design problem is significantly relevant within the business operations strategies framework and has emerged as an alternate strategy towards supply chain sustainability. However, its wide coverage in the scientific literature has focused mainly on the static planning approach and disregarded the dynamic approach, which is very useful in real-world applications. In this context, the present article offers a literature review of the dynamic facility layout problem (DFLP). First, a taxonomy of the reviewed papers is proposed based on the problem formulation current trends (related to the problem type, planning phase, planning approach, number of facilities, number of floors, number of departments, space consideration, department shape, department dimensions, department area, and materials handling configuration); the mathematical modeling approach (regarding the type of model, type of objective function, type of constraints, nature of market demand, type of data, and distance metric), and the considered solution approach. Then, the extent to which recent research into DFLP has contributed to supply chain sustainability by addressing its three performance dimensions (economic, environmental, social) is described. Finally, some future research guidelines are provided.This research was funded by the Spanish Ministry of Science, Innovation and Universities Project CADS4.0, grant number RTI2018-101344-B-I00; and the Valencian Community ERDF Programme 2014-2020, grant number IDIFEDER/2018/025.Pérez-Gosende, P.; Mula, J.; Díaz-Madroñero Boluda, FM. (2020). Overview of Dynamic Facility Layout Planning as a Sustainability Strategy. Sustainability. 12(19):1-16. https://doi.org/10.3390/su12198277S1161219Ghassemi Tari, F., & Neghabi, H. (2015). A new linear adjacency approach for facility layout problem with unequal area departments. Journal of Manufacturing Systems, 37, 93-103. doi:10.1016/j.jmsy.2015.09.003Kheirkhah, A., Navidi, H., & Messi Bidgoli, M. (2015). Dynamic Facility Layout Problem: A New Bilevel Formulation and Some Metaheuristic Solution Methods. IEEE Transactions on Engineering Management, 62(3), 396-410. doi:10.1109/tem.2015.2437195Altuntas, S., & Selim, H. (2012). Facility layout using weighted association rule-based data mining algorithms: Evaluation with simulation. Expert Systems with Applications, 39(1), 3-13. doi:10.1016/j.eswa.2011.06.045Ku, M.-Y., Hu, M. H., & Wang, M.-J. (2011). Simulated annealing based parallel genetic algorithm for facility layout problem. International Journal of Production Research, 49(6), 1801-1812. doi:10.1080/00207541003645789Navidi, H., Bashiri, M., & Messi Bidgoli, M. (2012). A heuristic approach on the facility layout problem based on game theory. International Journal of Production Research, 50(6), 1512-1527. doi:10.1080/00207543.2010.550638Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S. M. T., & Fakhrzad, M. B. (2017). Classification of facility layout problems: a review study. The International Journal of Advanced Manufacturing Technology, 94(1-4), 957-977. doi:10.1007/s00170-017-0895-8Carter, C. R., & Rogers, D. S. (2008). A framework of sustainable supply chain management: moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360-387. doi:10.1108/09600030810882816Carter, C. R., & Washispack, S. (2018). Mapping the Path Forward for Sustainable Supply Chain Management: A Review of Reviews. Journal of Business Logistics, 39(4), 242-247. doi:10.1111/jbl.12196Roy, V., Schoenherr, T., & Charan, P. (2018). The thematic landscape of literature in sustainable supply chain management (SSCM). International Journal of Operations & Production Management, 38(4), 1091-1124. doi:10.1108/ijopm-05-2017-0260Barbosa-Póvoa, A. P., da Silva, C., & Carvalho, A. (2018). Opportunities and challenges in sustainable supply chain: An operations research perspective. European Journal of Operational Research, 268(2), 399-431. doi:10.1016/j.ejor.2017.10.036Tonelli, F., Evans, S., & Taticchi, P. (2013). Industrial sustainability: challenges, perspectives, actions. International Journal of Business Innovation and Research, 7(2), 143. doi:10.1504/ijbir.2013.052576Sánchez-Flores, R. B., Cruz-Sotelo, S. E., Ojeda-Benitez, S., & Ramírez-Barreto, M. E. (2020). Sustainable Supply Chain Management—A Literature Review on Emerging Economies. Sustainability, 12(17), 6972. doi:10.3390/su12176972Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573-1587. doi:10.1016/j.jclepro.2016.04.150Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408-425. doi:10.1016/j.psep.2018.05.009Khuntia, J., Saldanha, T. J. V., Mithas, S., & Sambamurthy, V. (2018). Information Technology and Sustainability: Evidence from an Emerging Economy. Production and Operations Management, 27(4), 756-773. doi:10.1111/poms.12822Roy, S., Das, M., Ali, S. M., Raihan, A. S., Paul, S. K., & Kabir, G. (2020). Evaluating strategies for environmental sustainability in a supply chain of an emerging economy. Journal of Cleaner Production, 262, 121389. doi:10.1016/j.jclepro.2020.121389Morais, D. O. C., & Silvestre, B. S. (2018). Advancing social sustainability in supply chain management: Lessons from multiple case studies in an emerging economy. Journal of Cleaner Production, 199, 222-235. doi:10.1016/j.jclepro.2018.07.097Stindt, D. (2017). A generic planning approach for sustainable supply chain management - How to integrate concepts and methods to address the issues of sustainability? Journal of Cleaner Production, 153, 146-163. doi:10.1016/j.jclepro.2017.03.126MOSLEMIPOUR, G., LEE, T. S., & LOONG, Y. T. (2017). Performance Analysis of Intelligent Robust Facility Layout Design. Chinese Journal of Mechanical Engineering, 30(2), 407-418. doi:10.1007/s10033-017-0073-9Emami, S., & S. Nookabadi, A. (2013). Managing a new multi-objective model for the dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2215-2228. doi:10.1007/s00170-013-4820-5Al Hawarneh, A., Bendak, S., & Ghanim, F. (2019). Dynamic facilities planning model for large scale construction projects. Automation in Construction, 98, 72-89. doi:10.1016/j.autcon.2018.11.021Pournaderi, N., Ghezavati, V. R., & Mozafari, M. (2019). Developing a mathematical model for the dynamic facility layout problem considering material handling system and optimizing it using cloud theory-based simulated annealing algorithm. SN Applied Sciences, 1(8). doi:10.1007/s42452-019-0865-xTuranoğlu, B., & Akkaya, G. (2018). A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility layout problem. Expert Systems with Applications, 98, 93-104. doi:10.1016/j.eswa.2018.01.011Moslemipour, G., Lee, T. S., & Rilling, D. (2011). A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology, 60(1-4), 11-27. doi:10.1007/s00170-011-3614-xTebaldi, L., Bigliardi, B., & Bottani, E. (2018). Sustainable Supply Chain and Innovation: A Review of the Recent Literature. Sustainability, 10(11), 3946. doi:10.3390/su10113946Tseng, M.-L., Islam, M. S., Karia, N., Fauzi, F. A., & Afrin, S. (2019). A literature review on green supply chain management: Trends and future challenges. Resources, Conservation and Recycling, 141, 145-162. doi:10.1016/j.resconrec.2018.10.009Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252, 119869. doi:10.1016/j.jclepro.2019.119869Boar, A., Bastida, R., & Marimon, F. (2020). A Systematic Literature Review. Relationships between the Sharing Economy, Sustainability and Sustainable Development Goals. Sustainability, 12(17), 6744. doi:10.3390/su12176744Novais, L., Maqueira, J. M., & Ortiz-Bas, Á. (2019). A systematic literature review of cloud computing use in supply chain integration. Computers & Industrial Engineering, 129, 296-314. doi:10.1016/j.cie.2019.01.056Masi, D., Day, S., & Godsell, J. (2017). Supply Chain Configurations in the Circular Economy: A Systematic Literature Review. Sustainability, 9(9), 1602. doi:10.3390/su9091602Zavala-Alcívar, A., Verdecho, M.-J., & Alfaro-Saiz, J.-J. (2020). A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain. Sustainability, 12(16), 6300. doi:10.3390/su12166300Li, K., Rollins, J., & Yan, E. (2017). Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115(1), 1-20. doi:10.1007/s11192-017-2622-5Kulturel-Konak, S., & Konak, A. (2014). A large-scale hybrid simulated annealing algorithm for cyclic facility layout problems. Engineering Optimization, 47(7), 963-978. doi:10.1080/0305215x.2014.933825Madhusudanan Pillai, V., Hunagund, I. B., & Krishnan, K. K. (2011). Design of robust layout for Dynamic Plant Layout Problems. Computers & Industrial Engineering, 61(3), 813-823. doi:10.1016/j.cie.2011.05.014Peng, Y., Zeng, T., Fan, L., Han, Y., & Xia, B. (2018). An Improved Genetic Algorithm Based Robust Approach for Stochastic Dynamic Facility Layout Problem. Discrete Dynamics in Nature and Society, 2018, 1-8. doi:10.1155/2018/1529058McKendall, A. R., & Hakobyan, A. (2010). Heuristics for the dynamic facility layout problem with unequal-area departments. European Journal of Operational Research, 201(1), 171-182. doi:10.1016/j.ejor.2009.02.028Yang, C.-L., Chuang, S.-P., & Hsu, T.-S. (2010). A genetic algorithm for dynamic facility planning in job shop manufacturing. The International Journal of Advanced Manufacturing Technology, 52(1-4), 303-309. doi:10.1007/s00170-010-2733-0Abedzadeh, M., Mazinani, M., Moradinasab, N., & Roghanian, E. (2012). Parallel variable neighborhood search for solving fuzzy multi-objective dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 65(1-4), 197-211. doi:10.1007/s00170-012-4160-xGuan, X., Dai, X., Qiu, B., & Li, J. (2012). A revised electromagnetism-like mechanism for layout design of reconfigurable manufacturing system. Computers & Industrial Engineering, 63(1), 98-108. doi:10.1016/j.cie.2012.01.016Jolai, F., Tavakkoli-Moghaddam, R., & Taghipour, M. (2012). A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations. International Journal of Production Research, 50(15), 4279-4293. doi:10.1080/00207543.2011.613863Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M., & Khorrami, J. (2012). Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Computers & Operations Research, 39(11), 2642-2658. doi:10.1016/j.cor.2012.01.012McKendall, A. R., & Liu, W.-H. (2012). New Tabu search heuristics for the dynamic facility layout problem. International Journal of Production Research, 50(3), 867-878. doi:10.1080/00207543.2010.545446Hosseini-Nasab, H., & Emami, L. (2013). A hybrid particle swarm optimisation for dynamic facility layout problem. International Journal of Production Research, 51(14), 4325-4335. doi:10.1080/00207543.2013.774486Kaveh, M., Dalfard, V. M., & Amiri, S. (2013). A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints. Neural Computing and Applications, 24(5), 1179-1190. doi:10.1007/s00521-013-1339-5KIA, R., JAVADIAN, N., PAYDAR, M. M., & SAIDI-MEHRABAD, M. (2013). A SIMULATED ANNEALING FOR INTRA-CELL LAYOUT DESIGN OF DYNAMIC CELLULAR MANUFACTURING SYSTEMS WITH ROUTE SELECTION, PURCHASING MACHINES AND CELL RECONFIGURATION. Asia-Pacific Journal of Operational Research, 30(04), 1350004. doi:10.1142/s0217595913500048Mazinani, M., Abedzadeh, M., & Mohebali, N. (2012). Dynamic facility layout problem based on flexible bay structure and solving by genetic algorithm. The International Journal of Advanced Manufacturing Technology, 65(5-8), 929-943. doi:10.1007/s00170-012-4229-6Samarghandi, H., Taabayan, P., & Behroozi, M. (2013). Metaheuristics for fuzzy dynamic facility layout problem with unequal area constraints and closeness ratings. The International Journal of Advanced Manufacturing Technology, 67(9-12), 2701-2715. doi:10.1007/s00170-012-4685-zYu-Hsin Chen, G. (2013). A new data structure of solution representation in hybrid ant colony optimization for large dynamic facility layout problems. International Journal of Production Economics, 142(2), 362-371. doi:10.1016/j.ijpe.2012.12.012Bozorgi, N., Abedzadeh, M., & Zeinali, M. (2014). Tabu search heuristic for efficiency of dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 77(1-4), 689-703. doi:10.1007/s00170-014-6460-9CHEN, G. Y.-H., & LO, J.-C. (2014). DYNAMIC FACILITY LAYOUT WITH MULTI-OBJECTIVES. Asia-Pacific Journal of Operational Research, 31(04), 1450027. doi:10.1142/s0217595914500274Hosseini, S., Khaled, A. A., & Vadlamani, S. (2014). Hybrid imperialist competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem. Neural Computing and Applications, 25(7-8), 1871-1885. doi:10.1007/s00521-014-1678-xKia, R., Khaksar-Haghani, F., Javadian, N., & Tavakkoli-Moghaddam, R. (2014). Solving a multi-floor layout design model of a dynamic cellular manufacturing system by an efficient genetic algorithm. Journal of Manufacturing Systems, 33(1), 218-232. doi:10.1016/j.jmsy.2013.12.005Nematian, J. (2014). A robust single row facility layout problem with fuzzy random variables. The International Journal of Advanced Manufacturing Technology, 72(1-4), 255-267. doi:10.1007/s00170-013-5564-yPourvaziri, H., & Naderi, B. (2014). A hybrid multi-population genetic algorithm for the dynamic facility layout problem. Applied Soft Computing, 24, 457-469. doi:10.1016/j.asoc.2014.06.051Derakhshan Asl, A., & Wong, K. Y. (2015). Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization. Journal of Intelligent Manufacturing, 28(6), 1317-1336. doi:10.1007/s10845-015-1053-5Li, L., Li, C., Ma, H., & Tang, Y. (2015). An Optimization Method for the Remanufacturing Dynamic Facility Layout Problem with Uncertainties. Discrete Dynamics in Nature and Society, 2015, 1-11. doi:10.1155/2015/685408Ulutas, B., & Islier, A. A. (2015). Dynamic facility layout problem in footwear industry. Journal of Manufacturing Systems, 36, 55-61. doi:10.1016/j.jmsy.2015.03.004Zarea Fazlelahi, F., Pournader, M., Gharakhani, M., & Sadjadi, S. J. (2016). A robust approach to design a single facility layout plan in dynamic manufacturing environments using a permutation-based genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12), 2264-2274. doi:10.1177/0954405415615728Hosseini, S. S., & Seifbarghy, M. (2016). A novel meta-heuristic algorithm for multi-objective dynamic facility layout problem. RAIRO - Operations Research, 50(4-5), 869-890. doi:10.1051/ro/2016057Pourvaziri, H., & Pierreval, H. (2017). Dynamic facility layout problem based on open queuing network theory. European Journal of Operational Research, 259(2), 538-553. doi:10.1016/j.ejor.2016.11.011Tayal, A., & Singh, S. P. (2016). Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem. Annals of Operations Research, 270(1-2), 489-514. doi:10.1007/s10479-016-2237-xKumar, R., & Singh, S. P. (2017). A similarity score-based two-phase heuristic approach to solve the dynamic cellular facility layout for manufacturing systems. Engineering Optimization, 49(11), 1848-1867. doi:10.1080/0305215x.2016.1274205Liu, J., Wang, D., He, K., & Xue, Y. (2017). Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem. European Journal of Operational Research, 262(3), 1052-1063. doi:10.1016/j.ejor.2017.04.002Vitayasak, S., Pongcharoen, P., & Hicks, C. (2017). A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. International Journal of Production Economics, 190, 146-157. doi:10.1016/j.ijpe.2016.03.019Xiao, Y., Xie, Y., Kulturel-Konak, S., & Konak, A. (2017). A problem evolution algorithm with linear programming for the dynamic facility layout problem—A general layout formulation. Computers & Operations Research, 88, 187-207. doi:10.1016/j.cor.2017.06.025Li, J., Tan, X., & Li, J. (2018). Research on Dynamic Facility Layout Problem of Manufacturing Unit Considering Human Factors. Mathematical Problems in Engineering, 2018, 1-13. doi:10.1155/2018/6040561Vitayasak, S., & Pongcharoen, P. (2018). Performance improvement of Teaching-Learning-Based Optimisation for robust machine layout design. Expert Systems with Applications, 98, 129-152. doi:10.1016/j.eswa.2018.01.005Wei, X., Yuan, S., & Ye, Y. (2019). Optimizing facility layout planning for reconfigurable manufacturing system based on chaos genetic algorithm. Production & Manufacturing Research, 7(1), 109-124. doi:10.1080/21693277.2019.1602486Kulturel-Konak, S. (2007). Approaches to uncertainties in facility layout problems: Perspectives at the beginning of the 21st Century. Journal of Intelligent Manufacturing, 18(2), 273-284. doi:10.1007/s10845-007-0020-1Sharma, P., & Singhal, S. (2016). Implementation of fuzzy TOPSIS methodology in selection of procedural approach for facility layout planning. The International Journal of Advanced Manufacturing Technology, 88(5-8), 1485-1493. doi:10.1007/s00170-016-8878-8Bukchin, Y., & Tzur, M. (2014). A new MILP approach for the facility process-layout design problem with rectangular and L/T shape departments. International Journal of Production Research, 52(24), 7339-7359. doi:10.1080/00207543.2014.930534Meller, R. D., Kirkizoglu, Z., & Chen, W. (2010). A new optimization model to support a bottom-up approach to facility design. Computers & Operations Research, 37(1), 42-49. doi:10.1016/j.cor.2009.03.018Feng, J., & Che, A. (2018). Novel integer linear programming models for the facility layout problem with fixed-size rectangular departments. Computers & Operations Research, 95, 163-171. doi:10.1016/j.cor.2018.03.013Allahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Systems with Applications, 91, 46-62. doi:10.1016/j.eswa.2017.07.049Ahmadi, A., Pishvaee, M. S., & Akbari Jokar, M. R. (2017). A survey on multi-floor facility layout problems. Computers & Industrial Engineering, 107, 158-170. doi:10.1016/j.cie.2017.03.015Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255-267. doi:10.1016/j.arcontrol.2007.04.001Grobelny, J., & Michalski, R. (2017). A novel version of simulated annealing based on linguistic patterns for solving facility layout problems. Knowledge-Based Systems, 124, 55-69. doi:10.1016/j.knosys.2017.03.001Hathhorn, J., Sisikoglu, E., & Sir, M. Y. (2013). A multi-objective mixed-integer programming model for a multi-floor facility layout. International Journal of Production Research, 51(14), 4223-4239. doi:10.1080/00207543.2012.75348

    Facility layout planning. An extended literature review

    Full text link
    [EN] Facility layout planning (FLP) involves a set of design problems related to the arrangement of the elements that shape industrial production systems in a physical space. The fact that they are considered one of the most important design decisions as part of business operation strategies, and their proven repercussion on production systems' operation costs, efficiency and productivity, mean that this theme has been widely addressed in science. In this context, the present article offers a scientific literature review about FLP from the operations management perspective. The 232 reviewed articles were classified as a large taxonomy based on type of problem, approach and planning stage and characteristics of production facilities by configuring the material handling system and methods to generate and assess layout alternatives. We stress that the generation of layout alternatives was done mainly using mathematical optimisation models, specifically discrete quadratic programming models for similar sized departments, or continuous linear and non-linear mixed integer programming models for different sized departments. Other approaches followed to generate layout alternatives were expert's knowledge and specialised software packages. Generally speaking, the most frequent solution algorithms were metaheuristics.The research leading to these results received funding from the European Union H2020 Program under grant agreement No 958205 `Industrial Data Services for Quality Control in Smart Manufacturing (i4Q)'and from the Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-101344-B-I00 `Optimisation of zerodefectsproduction technologies enabling supply chains 4.0 (CADS4.0)'Pérez-Gosende, P.; Mula, J.; Díaz-Madroñero Boluda, FM. (2021). Facility layout planning. An extended literature review. International Journal of Production Research. 59(12):3777-3816. https://doi.org/10.1080/00207543.2021.189717637773816591

    Master production schedule using robust optimization approaches in an automobile second-tier supplier

    Full text link
    [EN] This paper considers a real-world automobile second-tier supplier that manufactures decorative surface finishings of injected parts provided by several suppliers, and which devises its master production schedule by a manual spreadsheet-based procedure. The imprecise production time in this manufacturer's production process is incorporated into a deterministic mathematical programming model to address this problem by two robust optimization approaches. The proposed model and the corresponding robust solution methodology improve production plans by optimizing the production, inventory and backlogging costs, and demonstrate the their feasibility for a realistic master production schedule problem that outperforms the heuristic decision-making procedure currently being applied in the firm under study.Funding was provided by Horizon 2020 Framework Programme (Grant Agreement No. 636909) in the frame of the "Cloud Collaborative Manufacturing Networks" (C2NET) project.Martín, AG.; Díaz-Madroñero Boluda, FM.; Mula, J. (2020). Master production schedule using robust optimization approaches in an automobile second-tier supplier. Central European Journal of Operations Research. 28(1):143-166. https://doi.org/10.1007/s10100-019-00607-2S143166281Alem DJ, Morabito R (2012) Production planning in furniture settings via robust optimization. Comput Oper Res 39:139–150. https://doi.org/10.1016/j.cor.2011.02.022Aloulou MA, Dolgui A, Kovalyov MY (2014) A bibliography of non-deterministic lot-sizing models. Int J Prod Res 52:2293–2310. https://doi.org/10.1080/00207543.2013.855336As’ad R, Demirli K, Goyal SK (2015) Coping with uncertainties in production planning through fuzzy mathematical programming: application to steel rolling industry. Int J Oper Res 22:1–30. https://doi.org/10.1504/IJOR.2015.065937Atamturk A, Zhang M (2007) Two-stage robust network flow and design under demand uncertainty. Oper Res 55:662–673. https://doi.org/10.1287/opre.1070.0428Aytac B, Wu SD (2013) Characterization of demand for short life-cycle technology products. Ann Oper Res 203:255–277. https://doi.org/10.1007/s10479-010-0771-5Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23:769–805. https://doi.org/10.1287/moor.23.4.769Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88:411–424. https://doi.org/10.1007/PL00011380Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52:35–53. https://doi.org/10.1287/opre.1030.0065Caulkins JJ, Morrison E, Weidemann T (2007) Spreadsheet errors and decision making: evidence from field interviews. J Organ End User Comput 19:1–23Childerhouse P, Towill DR (2002) Analysis of the factors affecting real-world value stream performance. Int J Prod Res 40:3499–3518. https://doi.org/10.1080/00207540210152885Chu SCK (1995) A mathematical programming approach towards optimized master production scheduling. Int J Prod Econ 38:269–279. https://doi.org/10.1016/0925-5273(95)00015-GConlon JR (1976) Is your master production schedule feasible? Prod Invent Manag 17:56–63De La Vega J, Munari P, Morabito R (2017) Robust optimization for the vehicle routing problem with multiple deliverymen. Cent Eur J Oper Res. https://doi.org/10.1007/s10100-017-0511-xDíaz-Madroñero M, Mula J, Jiménez M (2014a) Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. Int J Prod Res 52:6971–6988. https://doi.org/10.1080/00207543.2014.920115Díaz-Madroñero M, Mula J, Peidro D (2014b) A review of discrete-time optimization models for tactical production planning. Int J Prod Res 52:5171–5205. https://doi.org/10.1080/00207543.2014.899721Díaz-Madroñero M, Peidro D, Mula J (2014c) A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain. Appl Math Model 38:5705–5725. https://doi.org/10.1016/j.apm.2014.04.053Dolgui A, Ben Ammar O, Hnaien F et al (2013) Supply planning and inventory control under lead time uncertainty: a review. Stud Inform Control 22:255–268Dzuranin AC, Slater RD (2014) Business risks all identified? If you’re using a spreadsheet, think again. J Corp Account Finance 25:25–30. https://doi.org/10.1002/jcaf.21936Englberger J, Herrmann F, Manitz M (2016) Two-stage stochastic master production scheduling under demand uncertainty in a rolling planning environment. Int J Prod Res 54:6192–6215. https://doi.org/10.1080/00207543.2016.1162917Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: an overview. Eur J Oper Res 235:471–483Gharakhani M, Taghipour T, Farahani KJ (2010) A robust multi-objective production planning. Int J Ind Eng Comput 1:73–78. https://doi.org/10.5267/j.ijiec.2010.01.007González JJ, Reeves GR (1983) Master production scheduling: a multiple-objective linear programming approach. Int J Prod Res 21:553–562. https://doi.org/10.1080/00207548308942390Gorissen BL, Yanıkoğlu İ, den Hertog D (2015) A practical guide to robust optimization. Omega 53:124–137. https://doi.org/10.1016/j.omega.2014.12.006Grubbstrom RW, Tang O (2000) An overview of input-output analysis applied to production-inventory systems. Econ Syst Res 12:3–25. https://doi.org/10.1080/095353100111254Grubbström RW, Bogataj M, Bogataj L (2010) Optimal lotsizing within MRP theory. Annu Rev Control 34:89–100. https://doi.org/10.1016/J.ARCONTROL.2010.02.004Haojie Y, Lixin M, Canrong Z (2017) Capacitated lot-sizing problem with one-way substitution: a robust optimization approach. In: In 2017 3rd international conference on information management (ICIM). Institute of Electrical and Electronics Engineers Inc., pp 159–163Kara G, Özmen A, Weber G-W (2017) Stability advances in robust portfolio optimization under parallelepiped uncertainty. Cent Eur J Oper Res. https://doi.org/10.1007/s10100-017-0508-5Kawas B, Laumanns M, Pratsini E (2013) A robust optimization approach to enhancing reliability in production planning under non-compliance risks. OR Spectr 35:835–865. https://doi.org/10.1007/s00291-013-0339-2Kimms A (1998) Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing. Omega 26:355–366. https://doi.org/10.1016/S0305-0483(97)00056-XKo M, Tiwari A, Mehnen J (2010) A review of soft computing applications in supply chain management. Appl Soft Comput 10:661–674. https://doi.org/10.1016/j.asoc.2009.09.004Körpeolu E, Yaman H, Selim Aktürk M (2011) A multi-stage stochastic programming approach in master production scheduling. Eur J Oper Res 213:166–179. https://doi.org/10.1016/j.ejor.2011.02.032Kovačić D, Bogataj M (2013) Reverse logistics facility location using cyclical model of extended MRP theory. Cent Eur J Oper Res 21:41–57. https://doi.org/10.1007/s10100-012-0251-xKuchta D (2011) A concept of a robust solution of a multicriterial linear programming problem. Cent Eur J Oper Res 19:605–613. https://doi.org/10.1007/s10100-010-0150-yLage Junior M, Godinho Filho M (2017) Master disassembly scheduling in a remanufacturing system with stochastic routings. Cent Eur J Oper Res 25:123–138. https://doi.org/10.1007/s10100-015-0428-1Lee SM, Moore LJ (1974) Practical approach to production scheduling. Prod Invent Manag J 15:79–92Lehtimaki AK (1987) Approach for solving decision planning of master scheduling by utilizing theory of fuzzy sets. Int J Prod Res 25:1781–1793Li Z, Li Z (2015) Optimal robust optimization approximation for chance constrained optimization problem. Comput Chem Eng 74:89–99. https://doi.org/10.1016/j.compchemeng.2015.01.003Li Z, Ding R, Floudas CA (2011) A Comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization. Ind Eng Chem Res 50:10567–10603. https://doi.org/10.1021/ie200150pLi Z, Tang Q, Floudas CA (2012) A comparative theoretical and computational study on robust counterpart optimization: II. Probabilistic guarantees on constraint satisfaction. Ind Eng Chem Res 51:6769–6788. https://doi.org/10.1021/ie201651sMula J, Poler R, Garcia-Sabater J, Lario F (2006a) Models for production planning under uncertainty: a review. Int J Prod Econ 103:271–285. https://doi.org/10.1016/j.ijpe.2005.09.001Mula J, Poler R, Garcia JP (2006b) MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst 157:74–97. https://doi.org/10.1016/j.fss.2005.05.045Mula J, Poler R, Garcia-Sabater JP (2008) Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. Int J Prod Res 46:5589–5606. https://doi.org/10.1080/00207540701413912Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper Res 43:264–281. https://doi.org/10.1287/opre.43.2.264Nannapaneni S, Mahadevan S (2014) Uncertainty quantification in performance evaluation of manufacturing processes. In: 2014 IEEE international conference on Big Data (Big Data). IEEE, pp 996–1005Ng TS, Fowler J (2007) Semiconductor production planning using robust optimization. In: 2007 IEEE international conference on industrial engineering and engineering management. IEEE, pp 1073–1077Peidro D, Mula J, Poler RR, Lario F-C (2009) Quantitative models for supply chain planning under uncertainty: a review. Int J Adv Manuf Technol 43:400–420. https://doi.org/10.1007/s00170-008-1715-yPochet Y, Wolsey LA (2006) Production planning by mixed integer programming. Springer, BerlinPowell SG, Baker KR, Lawson B (2008) A critical review of the literature on spreadsheet errors. Decis Support Syst 46:128–138. https://doi.org/10.1016/j.dss.2008.06.001Rahmani D, Ramezanian R, Fattahi P, Heydari M (2013) A robust optimization model for multi-product two-stage capacitated production planning under uncertainty. Appl Math Model 37:8957–8971. https://doi.org/10.1016/j.apm.2013.04.016Sahinidis NV (2004) Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 28:971–983. https://doi.org/10.1016/j.compchemeng.2003.09.017Sakhaii M, Tavakkoli-Moghaddam R, Bagheri M, Vatani B (2015) A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines. Appl Math Model 40:169–191. https://doi.org/10.1016/j.apm.2015.05.005Soyster AL (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21:1154–1157. https://doi.org/10.1287/opre.21.5.1154Supriyanto I, Noche B (2011) Fuzzy multi-objective linear programming and simulation approach to the development of valid and realistic master production schedule. Logist J. https://doi.org/10.2195/lj_proc_supriyanto_de_201108_01Tavakkoli-Moghaddam R, Sakhaii M, Vatani B et al (2014) A robust model for a dynamic cellular manufacturing system with production planning. Int J Eng 27:587–598. https://doi.org/10.5829/idosi.ije.2014.27.04a.09Vargas V, Metters R (2011) A master production scheduling procedure for stochastic demand and rolling planning horizons. Int J Prod Econ 132:296–302. https://doi.org/10.1016/j.ijpe.2011.04.025Wang J, Shu Y-F (2005) Fuzzy decision modeling for supply chain management. Fuzzy Sets Syst 150:107–127Weng ZK, Parlar M (2005) Managing build-to-order short life-cycle products: benefits of pre-season price incentives with standardization. J Oper Manag 23:482–495. https://doi.org/10.1016/j.jom.2004.10.008Werner R (2008) Cascading: an adjusted exchange method for robust conic programming. Cent Eur J Oper Res 16:179–189. https://doi.org/10.1007/s10100-007-0047-6Yu C-S, Li H-L (2000) A robust optimization model for stochastic logistic problems. Int J Prod Econ 64:385–397. https://doi.org/10.1016/S0925-5273(99)00074-

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    Optimising the Analysis Stage in the Internationalisation of Manufacturing Operations

    Full text link
    [EN] The internationalisation of the manufacturing operations process includes decision-making about new facility implementation (NFI) and global supplier network development (GSND), whose first step is to analyse the situation of a company and its environment. The purpose of this paper is to investigate the optimal design of a manufacturing production and distribution network for global small-and medium-sized enterprises (SMEs). This research uses a mixed-integer linear programming (MILP) model to support decision-making in the analysis stage of the internationalisation of manufacturing operations for global SMEs. A real-world case study is presented to illustrate the application of the proposed model. Different scenarios were evaluated not only to identify the strengths and limitations of the mathematical programming model, but to also provide support for the next strategic decisions that the examined company has to make in the near future.This work was supported by the Spanish Ministry of Science, Innovation and Universities project entitled `Optimisation of zero-defects production technologies enabling supply chains 4.0 (CADS4.0)' (RTI2018-101344-B-I00).Comer, F.; Mula, J.; Díaz-Madroñero Boluda, FM.; Grillo, H. (2021). Optimising the Analysis Stage in the Internationalisation of Manufacturing Operations. The South African Journal of Industrial Engineering. 32(2):124-132. https://doi.org/10.7166/32-2-2371S12413232
    corecore